Functional Streams in Lisp
Explained
I have been wanting to comment on jcs’s post on streams in lisp,
and his take on what I did. But, I was traveling and having too much fun
playing with Collatz
sequences.
He is correct in that transporting the streams code from scheme to
lisp is almost trivial, and jcs did that nicely and concisely in his
post. As he also noticed, what I was trying to do was different.
Probably, this is a good opportunity to explain.
Streams as purely
functional data structures
In SICP,
Abelson and Sussman conceive them as potentially infinite lazy lists.
And they use the same interface as the regular lists. So, they have a
car
and a cdr
which obey the same algebraic
rules as the regular lists:
x = (cons (car x) (cdr x))
If one would like to develop streams from ground up as a functional
data structure, one option is to think of them as objects with two
specific functions: an iterator and an extractor. An
iterator receives a head for the stream and returns another
head, this time for the iterated stream. An extractor receives
a head and returns a single element which you’d like to construct out of
the stream and the head at the hand.
To make things clear: when I say the head I mean the whole
sequence of elements constructed at a moment. Also, in the
implementations below they are in the reverse order: from the last to
the first. Don’t blame me: car
is cheaper than
(lambda (x) (car (reverse x)))
.
In this picture, a stream is purely functional: whoever has the head
has the stream. No locks or semaphores. They are immutable, efficient,
and with clever use of memoization for the iterators and extractors they
are really fast.
The interface
The code for the interface consisted of three functions only. I had a
take
function:
(defun s-take (stream n &optional head)
(destructuring-bind
(iterator . extractor) stream
(do* ((x head (funcall iterator x))
(y nil (cons (funcall extractor x) y))
(i n (1- i)))
((zerop i) y))))
S-TAKE
which would take from the stream a specific number of items; a
map
function which would apply a sequence of functions to
the values after we extract them:
(defun s-map (stream &rest fns)
(destructuring-bind
(iterator . extractor) stream
(cons iterator
(lambda (x)
(let ((y (funcall extractor x)))
(dolist (fn fns y)
(setf y (funcall fn y))))))))
S-MAP
and finally; a filter
function which would filter the
values extracted according to a list of predicates:
(defun s-filter (stream &rest preds)
(destructuring-bind
(iterator . extractor) stream
(cons (lambda (x)
(do* ((y (funcall iterator x) (funcall iterator y))
(z (funcall extractor y) (funcall extractor y)))
((every (lambda (pred) (funcall pred z)) preds) y)))
extractor)))
S-FILTER
Some examples
For simple streams such as the natural numbers or arithmetic
progressions, the extractor returns the last element of the head and the
iterator increases this value and affixes to the head.
(defvar natural-numbers
(cons (lambda (x)
(if (null x)
(list 1)
(cons (1+ (car x)) x)))
#'car))
NATURAL-NUMBERS
(s-take natural-numbers 10)
(10 9 8 7 6 5 4 3 2 1)
(defun arithmetic-progression (a b)
(cons (lambda (x)
(if (null x)
(list b)
(cons (+ a (car x)) x)))
#'car))
ARITHMETIC-PROGRESSION
(s-take (arithmetic-progression 12 3) 10)
(111 99 87 75 63 51 39 27 15 3)
For the Fibonnacci
sequence, the extractor is the same, but the iterator takes the last two
values and affixes the sum to the head.
(defvar fibonacci
(cons (lambda (x)
(cond
((null x) (list 1))
((= 1 (length x)) (list 1 1))
(t (cons (+ (car x) (cadr x)) x))))
#'car))
FIBONACCI
(s-take fibonacci 10)
(55 34 21 13 8 5 3 2 1 1)
During the course of my experiments
(2015-01-01-functional_streams.html) here
and here
I gave several examples (some of which I reproduced here), but today I
will give a new one: I’d like to construct a stream of integers which
will give the sums of squares of the first integers. In that case, the iterator
takes the last value of the list, adds one to it and then affixes to the
head. The extractor on the other hand, takes the whole list and finds
the sum of the squares.
(defvar sums-of-squares
(cons (lambda (x)
(if (null x)
(list 1)
(cons (1+ (car x)) x)))
(lambda (x) (reduce #'+ (mapcar (lambda (i) (* i i)) x)))))
SUMS-OF-SQUARES
(s-take sums-of-squares 10)
(385 285 204 140 91 55 30 14 5 1)
Of course, we can get the same stream from
natural-numbers
using a map:
(s-take
(s-map
natural-numbers
(lambda (x) (* x (1+ x) (1+ (* 2 x)) (/ 6))))
10)
(385 285 204 140 91 55 30 14 5 1)
but I was trying to make a point in saying that the extractor is an
integral part of the stream, and in practice, may need to know the full
head of the stream at the time of extraction, not just the last
element.
Now, we can filter and map this stream to get new stream(s):
(defun binary-palindrome-p (x)
(string-equal
(format nil "~b" x)
(reverse (format nil "~b" x))))
BINARY-PALINDROME-P
(s-take
(s-map
(s-filter
sums-of-squares
#'oddp
#'binary-palindrome-p)
(lambda (x) (format nil "~b" x)))
4)
(110011000101101000110011 1100110011 101 1)
Addendum
I forgot: there is also room for a reducer in the s-take
interface which can easily obtained by changing the reducer from
cons
to any other reducer:
(defun s-take (stream n &optional head (reducer #'cons))
(destructuring-bind
(iterator . extractor) stream
(do* ((x head (funcall iterator x))
(y nil (funcall reducer (funcall extractor x) y))
(i n (1- i)))
((zerop i) y))))
and one can call it as
(s-take
(s-map
natural-numbers
(lambda (x) (* x x))
10
nil
(lambda (x y) (+ (or x 0) (or y 0))))
385
Older Posts
[2024-12-24] Number of isomorphism classes
of simple graph (continued)
[2024-12-22] Counting Isomorphism
Classes of Graphs
[2024-11-25] Connected Components
of Graphs
[2024-11-24] Counting connected
components of a graph
[2024-11-18] Counting Isomorphism
Classes of m-ary Trees
[2024-11-16] Number of
Isomorphism Classes of Ternary Trees
[2024-11-12] Hosoya Index of Balanced
Binary Trees
[2024-11-11] Hosoya Index of a
Graph
[2024-10-29] The Clique Number of a Simple
Graph
[2024-10-28] The Size of
Maximally Independent Subsets in a Graph
[2023-11-03] Graph
Algorithms in JGraphT with Common Lisp
[2023-10-28] An
Implementation of Pandas’ cut
and qcut
in
Lisp
[2023-07-24] A
Collatz-like Conjecture for the Projective Line
[2023-03-06] Twin
Primes, Cousin Primes, Sexy Primes, and Prime Triplets
[2023-03-02] Set
of All Partitions of a Finite Set
[2023-02-14] Non-crossing
Partitions and Dyck Words
[2023-02-13] Non-crossing
Linear Chords
[2023-02-04] Clojure/Python
Interop Examples
[2023-01-14] Graph
Algorithms in Clojure with JGraphT
[2022-03-29] 2D-Random Walk
[2022-03-28] Trade
Deficit vs Exchange Rate Curve
[2022-03-16] Working
with World Bank Data in Python
[2022-03-09] Working
with European Central Bank data in python (revisited)
[2022-01-24] A
Clique Analysis of Quakers in early modern Britain (1500-1700)
[2021-12-05] Boyer–Moore
and Misra-Gries Algorithms in Clojure
[2021-09-12] Tension in Text
Plotted
[2021-09-02] Statistical
Distributions using Apache Commons Math in Clojure
[2021-08-31] Reduce
with Intermediate Results in Common Lisp
[2021-08-21] Multivariate
Regression Implemented in Clojure
[2021-05-29] Using
Neural Networks to Detect Graph Properties
[2021-04-17] Fast
Null-Space Calculation via LU-Decomposition
[2021-02-24] Stoer-Wagner
Algorithm in Clojure
[2021-02-19] Calculating
Vertex Covers in Clojure
[2021-02-18] Listing All
Paths in a Graph
[2021-02-14] Strict
Dyck Words and Fibonacci Numbers
[2021-02-14] Kruskal’s
Algorithm in Common Lisp
[2021-02-13] Kruskal's
Algorithm Implemented in Clojure
[2021-02-10] An
integer dynamical system of integers
[2021-02-08] Binary
Symmetrization
[2021-01-28] Prüfer
Encoding and Decoding of a Tree in Clojure
[2021-01-27] Counting
Cycle-Free Paths in a Graph
[2021-01-27] Counting
Connected Labeled Graphs
[2020-12-18] Counting
Graphs with a Prescribed Degree Sequence
[2020-12-13] Havel–Hakimi
Algorithm in Clojure
[2020-12-12] Havel–Hakimi
Algorithm in Common-Lisp
[2020-10-23] The Quadratic
Casimir Element
[2020-07-04] Collatz Sequence
in Binary
[2020-07-02] A Lazy
Sequence of Primes in Clojure
[2020-06-10] Yet
Another Fizz-Buzz in Common Lisp
[2020-05-12] ECB
Data with Clojure and Vega-Lite
[2020-05-06] Processing
ECB Data with Common Lisp
[2020-04-17] Next
Permutation in the Lexicographical Ordering
[2020-04-13] Turkish
Hyphenation in Common Lisp
[2020-04-01] Using JavaPlex
with Clojure
[2019-11-05] Constricted
Arithmetic Progressions
[2019-11-03] The
Number of Arithmetic Progressions of Integers
[2019-05-06] Bron-Kerbosch
Algorithm in Clojure
[2019-05-01] An
Implementation of Ford-Fulkerson Algorithm in Clojure
[2019-04-22] Document
Summarization via Nonnegative Matrix Factorization
[2019-04-20] Latent
Semantic Analysis in Clojure
[2019-04-13] K-Nearest
Neighbors Algorithm in Clojure
[2019-04-06] K-Means
Implemented in Clojure
[2019-03-19] Prüfer
Encoding/Decoding of a Tree in Common Lisp
[2019-03-05] Gale-Shaply
Algorithm in Common Lisp
[2019-03-02] Calculating
The Correct Rank of a Matrix
[2018-12-04] Feed-forward
and back-propagation in neural networks as left- and right-fold
[2018-10-31] Nonnegative
Matrix Decomposition in Clojure
[2018-10-30] Non-negative
Matrix Decomposition in Scala
[2018-08-30] Working
with European Central Bank Data in Scala
[2018-07-30] Perverse
Sequences
[2018-05-28] Online
Perceptron in Common Lisp
[2018-05-26] Online Perceptron
[2018-05-18] Online Regression
[2018-05-06] Knut’s
Algorithm-S in Common Lisp
[2018-02-28] Irreducible Dyck
Words
[2018-02-19] Optimization
with GNU Scientific Library for Lisp
[2018-02-10] Van Eck’s
Sequence
[2018-02-09] Hiring
networks in mathematics
[2018-02-08] Linus Sequence
[2018-02-05] Egyptian
Fractions
[2018-02-01] Listing all
Young Tableaux
[2018-01-23] Collatz sequence
(yet again)
[2018-01-15] Hofstadter's Q
sequence
[2018-01-09] Farey Sequence
[2018-01-09] Catalan's
Triangle
[2018-01-06] The
Shoelace Formula for the Area of a Polygon
[2017-10-01] Working
with European Central Bank Data in Python
[2017-09-27] Expected
Value of the Diameter of a Tree
[2017-09-26] Using
Quandl with kixi.stats on Clojure
[2017-09-22] Using Quandl
with Common Lisp
[2017-08-05] Solving
Linear Equations in Natural Numbers
[2017-07-31] Transitive
Closure of a Directed Graph or a Relation
[2017-07-20] Steenrod-Milnor
and Tournament Sequences
[2017-07-15] A
lower bound on the radius of a graph
[2017-07-08] All partitions
of an integer
[2017-07-06] Some Hasse
Diagrams
[2017-07-04] Shuffles
[2017-07-03] Kaprekar Sequence
[2017-07-01] Lattice of Dyck
Words
[2017-06-28] The
poset of connected subgraphs of a connected graph
[2017-06-21] Calculating
the Diameter and the Radius of a Graph Using Tropic Linear
Algebra
[2017-06-19] Generating
random regular graphs
[2017-06-14] Estimating
the maximum element of a large list
[2017-06-09] A
Stochastic Gradient Descent Implementation in Clojure
[2017-06-06] A topology
problem
[2017-04-22] Listing duplicate
files
[2017-03-14] My First Idris
Proof
[2016-12-02] Distinguishing
hash functions (part II)
[2016-12-01] Distinguishing
hash functions
[2016-10-20] Hofstadter-Conway
$10,000 sequence
[2016-08-18] A
Solution for Problem 171 of 4Clojure
[2016-08-16] Puzzles and Group
Theory
[2016-08-13] Using Weka within
Lisp
[2016-07-12] Funniest
and Unfunniest Jokes in the Jester Dataset
[2016-07-05] Generating
Uniformly Random Connected Graphs
[2016-06-16] The
Robinson-Schensted Algorithm
[2016-06-01] Conjugate
Partitions
[2016-04-27] Using Word2Vec
from Clojure
[2016-04-24] Using
Word2Vec from Common Lisp
[2016-04-18] A Migration
Analysis
[2016-04-11] Basic
Data Analysis with CL without Frameworks
[2016-03-25] Parallel
map-reduce in Common Lisp
[2016-02-22] Text
Summarization and Topic Analysis
[2016-01-27] Set Covering
Problem
[2016-01-25] Kolmogorov-Smirnov
Test
[2016-01-20] Eigen-values
of the Laplacian and Connected Components of a Graph
[2015-12-12] Dual Graphs
[2015-10-26] Longest
Increasing Subsequence Revisited
[2015-10-16] Document
Summarization via Markov Chains
[2015-10-07] Computational
Literary Analysis
[2015-09-30] Library of
Babel in Common Lisp
[2015-09-28] Merging
Association Lists in Common Lisp
[2015-07-22] Cheapest
Paths via Tropic Matrices
[2015-07-21] Hidden
Markov Models via Tropic Matrices
[2015-07-08] A non-technical
post
[2015-06-28] An
implementation of the Viterbi algorithm in Common Lisp
[2015-05-28] Greatest
Common Divisor of Two Rational Numbers
[2015-05-21] Partitions
of Equal Measure Whatever the Measure May Be
[2015-05-14] Finding Cliques
in a Graph
[2015-05-12] Set Cover Problem
[2015-05-03] Threading
Macros in Common Lisp
[2015-05-03] Happy Numbers
[2015-05-01] Collatz Primes
[2015-04-23] Splitting Streams
[2015-04-06] Hamming
Distance and Double Hashing
[2015-04-05] Hamming
Distance and Hashing Functions
[2015-04-05] Hamming
Derivative of Hashing Functions
[2015-04-02] A Topology
Problem
[2015-03-21] Curve
Fitting is a Gram-Schmidt Reduction
[2015-03-08] Maximum
number of characters using keystrokes A, Ctrl+A, Ctrl+C and
Ctrl+V
[2015-03-06] Eccentricity,
Radius and Diameter in a Graph, Revisited
[2015-03-01] Graphs and
Entropy
[2015-02-22] Math PhD
Hiring Network (Part 3)
[2015-02-19] Math PhD
Hiring Network (Part 2)
[2015-02-18] Math PhD
Hiring Network (Part 1)
[2015-02-17] Faculty
Networks and Inequality in Hiring Practices in Universities
[2015-02-10] Functional
Streams in Lisp Explained
[2015-02-05] Collatz-type
Conjectures (Continued)
[2015-02-04] Collatz-type
Conjectures (Continued)
[2015-01-31] Collatz-type
Conjectures (Continued)
[2015-01-30] Collatz-type
Conjectures
[2015-01-28] Experiments
with Infinite Recursive Sequences (continued)
[2015-01-17] Experiments
with Infinite Recursive Sequences
[2015-01-10] Goldbach Pairs
[2015-01-02] Collatz Lengths
(Continued)
[2015-01-01] Functional
Streams
[2014-12-27] Polarization
in the US Congress
[2014-12-18] Partition a
sequence
[2014-11-28] Uniformly
Random Permutations
[2014-11-22] An
Implementation of Ford-Fulkerson Algorithm in Common Lisp
[2014-11-17] Tropic
Calculation of Cheapest Paths
[2014-11-05] Longest
common subsequence of two sequences
[2014-10-30] Counting
Spanning Trees of a Graph
[2014-10-26] Longest
Increasing Subsequence
[2014-10-24] The
Number of Inversions in a Sequence
[2014-10-22] Hashes and
Entropy
[2014-10-09] Estimating
Cardinality with Constant Memory Complexity
[2014-09-30] Landau's Function
[2014-09-29] A
Problem on Substitution Ciphers and Group Theory
[2014-09-28] A Morse Code
Translator
[2014-09-23] A
Memoization Macro for Common Lisp
[2014-09-21] Reducers are
Monoid Morphisms
[2014-09-18] Number
of isomorphism classes of binary trees
[2014-09-07] CONS is your
friend
[2014-08-22] A Zipf's Law
Simulation
[2014-08-07] Generating
Uniformly Random Trees
[2014-07-09] A Solution
for Project Euler #463
[2014-06-12] Entropy of
truncated MD5 hashing
[2014-06-08] Hexadecimal digits
of π
[2014-02-11] Information
content of n-grams
[2014-02-08] Turkish
Sentiment Analysis Using Thesaurus Distance
[2014-02-01] Sentiment
analysis using word distances
[2014-01-27] Phase
transitions in entropy
[2013-12-13] Optimal length of
n-grams
[2013-12-10] Counting
strings that contain intervals of same letter repetitions
[2013-12-02] Patterns
Separating Large Texts
[2013-11-23] Collatz
Sequences (Continued)
[2013-11-11] Entropy
and approximately one-to-one maps
[2013-10-23] Tree Isomorphism
[2013-10-15] Self Organizing
Maps
[2013-09-15] Euler Project
#401
[2013-09-15] An
additively recursive definition of the Moebius function
[2013-09-11] An
Unsuccessful Attempt for Solving Euler Project #401
[2013-09-04] Uniform
Sampling from Parametrized Submanifolds in Scala
[2013-09-04] Uniform
Sampling from Parametrized Submanifolds
[2013-08-30] Randomly
Generated Points Obeying a Distribution
[2013-08-25] Simulated
Annealing in Lisp
[2013-08-21] Eigenvalues
and Eigenvectors in GSLL
[2013-08-16] Reservoir
Sampling
[2013-08-11] Gibbs
sampling in lisp compared with C
[2013-08-10] Logistic
Regression in lisp
[2013-08-10] Linear
Discriminant Analysis in R
[2013-07-17] A
Gradient Descent Implementation in Lisp
[2013-07-01] k-Nearest
Neighbor Classification Algorithm Implemented in Lisp
[2013-05-19] Newton-Raphson
Method
[2013-05-07] Levenshtein
Distance
[2013-04-15] Cut points in a
graph
[2013-04-01] Experiments
on Collatz Lengths (Continued)
[2013-02-18] The
sound of the torsion parts of homotopy groups of spheres
[2013-02-12] Monadic Units
[2013-02-07] Distribution
of Collatz Lengths (continued)
[2013-02-03] Distribution
of Collatz Lengths
[2013-01-31] Quotients
of polynomial algebras
[2013-01-12] Path ideals
[2013-01-10] McCarthy91
Terminates
[2013-01-09] Finding
all paths in a directed graph
[2013-01-04] A
Simple Monte-Carlo Integration Implementation in Lisp
[2012-12-30] A
simple problem in Kolmogorov-Chaitin complexity
[2012-12-29] From walks to
paths
[2012-12-16] Higher
order functions, functors and monads
[2012-12-13] Eccentricity,
Radius and Diameter in an Undirected Graph
[2012-11-29] Untitled
[2012-11-25] Strictly
Increasing Labels of Directed Graphs
[2012-11-19] Strictly
Increasing Labellings of Directed Graphs
[2012-11-17] Nilpotent
elements in an artinian algebra
[2012-11-04] Local
rings, idempotents and non-invertible elements
[2012-10-18] An
implementation of the fixed-radius near neighbor clustering algorithm in
lisp
[2012-10-15] Reducing directed
graphs
[2012-10-10] An
implementation of the k-means
clustering algorithm in lisp
[2012-10-08] A
comparison of different map functions in lisp
[2012-10-03] Source code
entropy
[2012-09-28] Collisions in
random walks
[2012-09-26] Transitive
closure of a directed graph
[2012-09-26] Solving
linear equations in ℕ
[2012-09-26] Listing
partitions
[2012-09-26] Inverting
formal power series
[2012-09-26] Hasse
subgraph of a directed graph